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Abstract—We give an O(n log3 n) algorithm that, given an n-
node directed planar graph with arc capacities, a set of source
nodes, and a set of sink nodes, finds a maximum flow from the
sources to the sinks. Previously, the fastest algorithms known
for this problem were those for general graphs.
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I. INTRODUCTION

The maximum flow problem with multiple sources and
sinks in a directed graph with arc-capacities is, informally,
to find a way to route a single commodity from a given set
of sources to a given set of sinks such that the total amount
of the commodity that is delivered to the sinks is maximum
subject to each arc carrying no more than its capacity. In
this paper we study this problem in planar graphs.

The study of maximum flow in planar graphs has a long
history. In 1956, Ford and Fulkerson introduced the max
st-flow problem, gave a generic augmenting-path algorithm,
and also gave a particular augmenting-path algorithm for the
case of a planar graph where s and t are on the same face.
Researchers have since published many algorithmic results
proving running-time bounds on max st-flow for (a) planar
graphs where s and t are on the same face, (b) undirected
planar graphs where s and t are arbitrary, and (c) directed
planar graphs where s and t are arbitrary. The best bounds
known are (a) O(n) [13], (b) O(n log log n) [16], and (c)
O(n log n) [2], where n is the number of nodes in the graph.

Maximum flow in planar graphs with multiple sources
and sinks was studied by Miller and Naor [26]. When it is
known how much of the commodity is produced/consumed
at each source and each sink, finding a consistent routing
of flow that respects arc capacities can be reduced to
negative-length shortest paths, which we now know can
be solved in planar graphs in O(n log2 n/ log log n) time
[27]. Otherwise, Miller and Naor gave an O(n log3/2 n)
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algorithm for the case where all the sinks and the sources
are on the boundary of a single face, and generalized it to
an O(k2n3/2 log2 n)-time algorithm for the case where the
sources and the sinks reside on the boundaries of k different
faces.1

However, the problem of maximum flow with multiple
sources and sinks in planar graphs without any additional
restrictions remained open. In general (i.e., non-planar)
graphs, multiple sources and sinks can be reduced to the
single-source single-sink case by introducing an artificial
source and sink and connecting them to all the sources
and sinks, respectively—but this reduction does not preserve
planarity. For more than twenty years since the problem
was explicitly stated and considered [26], the fastest known
algorithm for computing multiple-source multiple-sink max-
flow in a planar graph has been to use this reduction in
conjunction with a general maximum-flow algorithm such
as that of Sleator and Tarjan [29] which leads to a running
time of O(n2 log n). For integer capacities less than U , one
could instead use the algorithm of Goldberg and Rao [9],
which leads to a running time of O(n1.5 log n logU). No
planarity-exploiting algorithm was known for the problem.

Theorem I.1. There exists an algorithm that solves the
maximum flow problem with multiple sources and sinks in
an n-node directed planar graph in O(n log3 n) time.

Application to computer vision problems: Multiple-
source multiple-sink min-cut arises in addressing a family
of problems associated with the terms metric labeling [24],
Markov Random Fields [8], and Potts Model (see also [4],
[14]). In low-level vision problems such as image restora-
tion, segmentation, stereo, and motion, the goal is to assign
labels from a set to pixels so as to minimize a penalty
function. The penalty function is a sum of two parts. One
part, the data component, has a term for each pixel; the cost
depends on the discrepancy between the observed data for

1The time bound of the first algorithm can be improved to O(n logn)
using the linear-time shortest-path algorithm of Henzinger et al. [13], and
the time bound of the second algorithm can be improved to O(k2n log2 n)
using the O(n logn)-time single-source single-sink maximum flow algo-
rithm of Borradaile and Klein [2].



the pixel and the label chosen for it. The other part, the
smoothing component, penalizes neighboring pixels that are
assigned different labels.

For the binary case (when the set of available labels
has size two), finding the optimal solution is reducible to
multiple-source multiple-sink min-cut. [11]. For the case
of more than two labels, there is a powerful and effective
heuristic [4] using very-large-neighborhood [1] local search;
the inner loop consists of solving the two-label case. The
running time for solving the two-label case is therefore
quite important. For this reason, researchers in computer
vision have proposed new algorithms for max flow and done
experimental studies comparing the run-times of different
max-flow algorithms on the instances arising in this context
(e.g. [3]). For the (common) case where the underlying graph
of pixels is the two-dimensional grid graph, our result yields
a theoretical speed-up for this important computer-vision
subroutine.2

Hochbaum [14] describes a special case of the penalty
function in which the data component is convex and the
smoothing component is linear; in this case, she shows that
an optimal solution can be found in time O(T (m,n) +
n logU) where U is the maximum label, and T (m,n) is the
time for finding a minimum cut. She mentions specifically
image segmentation, for which the graph is planar. For this
case, by using our algorithm, the optimal solution can be
found in nearly linear time.

Application to maximum bipartite matching: It is well
known that finding a maximum matching in a bipartite
planar graph can be reduced to computing multiple-source,
multiple-sink maximum flow. Our result is the first planarity-
exploiting algorithm for this problem (and the first near-
linear one).

Techniques: To obtain our result, we employ a wide
range of sophisticated algorithmic techniques for planar
graphs, some of which we adapted to our needs while others
are used unchanged. Our algorithm uses pseudoflows [10],
[15] and a divide-and-conquer scheme influenced by that
of [18] and that of [26]. We adapt a method for using shortest
paths to solve max st-flow when s and t are adjacent [12],
and a data structure for implementing Dijkstra’s algorithm
in a dense distance graph derived from a planar graph [7].
Among the other techniques we employ are: using cycle sep-
arators [25] recursively while keeping the boundary nodes
on a constant number of faces [7], [23], an algorithm for
single-source single-sink max flow [2], [6], an algorithm for
computing multiple-source shortest paths [5], [22], a method
for cancelling cycles of flow in a planar graph [19], and a
data structure for range queries in a Monge matrix [20].

2Note that the single-source, single-sink max-flow algorithm of [2] was
implemented by computer-vision researchers [28] and found to be useful
in computer vision and to be faster than the competitors.

A. Preliminaries

We assume the reader is familiar with the basic definitions
of planar embedded graphs and their duals (see, e.g., [2]).
Let G = (V,E) be a planar embedded graph with node-
set V and arc-set E. We use the term arc to emphasize
that edges are directed. The term edge is used when the
direction of an arc is not important. For each arc a in the
arc-set E, we define two oppositely directed darts, one in
the same orientation as a (which we sometimes identify with
a) and one in the opposite orientation [2]. The head and the
tail of a dart d are such that d is oriented from tail(d) to
head(d). We define rev(·) to be the function that takes each
dart to the corresponding dart in the opposite direction. It is
notationally convenient to equate the edges, arcs and darts
of G with the edges, arcs and darts of the planar dual G∗.

Let S ⊂ V be a set of nodes called sources, and let
T ⊆ V − S be a set of nodes called sinks.

A flow assignment f(·) is a real-valued function on
darts that satisfies antisymmetry: f(rev(d)) = −f(d) for
every dart d. A capacity assignment c(·) is a real-valued
function on darts. We say a flow assignment f(·) respects
the capacity of dart d if f(d) ≤ c(d), and we call f(·) a
pseudoflow if it respects the capacities of all darts.

For a given flow assignment f(·), the net inflow (or just
inflow) at node v is inflowf (v) =

∑
dart d:head(d)=v f(d).

3

The outflow of v is outflowf (v) = −inflowf (v). A flow
assignment f(·) is said to obey conservation at node v
if inflowf (v) = 0. A feasible flow is a pseudoflow that
obeys conservation at every node other than the sources
and sinks. A feasible circulation is a pseudoflow that obeys
conservation at all nodes. The value of a feasible flow f(·)
is the sum of inflows at the sinks,

∑
t∈T inflowf (t). The

maximum flow problem is that of finding a feasible flow
with maximum value.

For two flow assignments f ,f ′, the addition f + f ′ is
the flow that assigns f(d) + f ′(d) to every dart d.

A residual path in G is a path whose darts all have strictly
positive capacities. For two sets of nodes A,B, we write
A

G→ B to state the existence of a residual a-to-b path in
G for some nodes a ∈ A and b ∈ B. Conversely, A G9 B
indicates that no such path exists. We omit the graph G when
it is clear from the context.

The residual graph of G with respect to a flow assignment
f(·) is the graph Gf with the same arc-set, node-set, sources
and sinks, and with capacity assignment cf (·) such that, for
every dart d, cf (d) = c(d)− f(d). It is well-known that a

feasible flow f in G is maximum if and only if S
Gf9 T .

Let f be a pseudoflow in a planar graph G. Let V + denote
the set of nodes {v ∈ V − (S ∪ T ) : inflowf (v) > 0}.
Similarly, let V − denote the set of nodes {v ∈ V − (S ∪

3An equivalent definition in terms of arcs is inflowf (v) =∑
a∈E:head(a)=v f(a)−

∑
a∈E:tail(a)=v f(a).



T ) : inflowf (v) < 0}. Suppose S ∪ V + Gf9 T ∪ V −. The
pseudoflow f can be converted to a maximum flow in linear
time by canceling flow cycles [19] and sending back flow
from V + and into V − in topological sort order [18].

B. Overview of the Algorithm

Consider the following recursive approach for finding a
max flow: split the input graph G in two using an O(

√
n)

simple cycle separator C [25] and recursively solve the
max flow problem in each of the two subgraphs. After the
recursive calls, each subgraph contains no residual source-
to-sink path. We would like to additionally ensure that there
is no residual source-to-C/C-to-sink paths in order to ensure
that G contains no source-to-sink residual path.

In order to achieve this, we sacrifice conservation; we
allow nonzero inflow at nodes of the separator C. To address
this, we introduce a new subproblem: pushing flow between
the nodes of C so as to ensure that there is no residual path
from a positive-inflow node of C to a negative-inflow node
of C. Our algorithm for solving this problem (Section III)
deals with one node of C at a time. For each node, the
algorithm moves flow between that node of C and the others
to achieve the following: (i) the node has zero inflow, or (ii)
the node has positive inflow but there is no residual path
from that node to nodes of C with negative inflow, or (iii)
the node has negative inflow but there is no residual path to
that node from nodes of C with positive inflow.

Our algorithm for achieving this uses an implicit represen-
tation of the flow. This enables it to carry out each iteration
in O(

√
n log2 n) time using an efficient data structure [7]

for implementing Dijkstra’s algorithm to compute shortest
paths in the planar dual. Thus the total time for solving
this subproblem is O(n log2 n), leading to an O(n log3 n)
running time for the main algorithm. Any omitted proofs
can be found in the arXiv version of the paper.

II. THE ALGORITHM

Now we describe the algorithm, MSMSMAXFLOW, in
more detail. (“MSMS” stands for “multiple-source, multiple-
sink”.) In order to treat nodes of the cycle separator both as
sources and as sinks in recursive calls, we introduce a new
node set A of size at most 6. To solve the original problem,
one uses A := ∅.

MSMSMAXFLOW(G, c,S,T ,A)
Input: a directed planar graph G with non-negative capaci-
ties c, a set S of source nodes, a set T of sink nodes, a set
A of at most six nodes
Output: a pseudoflow f obeying conservation everywhere
except S, T,A and such that S

Gf9 T , S
Gf9 A, A

Gf9 T .

The algorithm finds a size-O(
√
n) simple cycle separator

C. Following, e.g., [7], [23], The separator is chosen to
ensure each subgraph has at most two-thirds the nodes of G
(if |A| < 6) or at most two-thirds the nodes of A (if |A| = 6).

If C contains a source u, introduce an artificial node u′

and artificial arc u′u with high capacity, and designate u′ a
source instead of u. Sinks on C are handled similarly. From
now on, we assume for simplicity of presentation that no
nodes of C are sources or sinks.

The algorithm contracts all edges of C except one. This
merges all the nodes of C into a single supernode v, and
turns C into a self-loop. The algorithm then recursively
solves the problem on the subgraph embedded on each side
of the self-loop, adding v to the set A.

After the recursive calls, the algorithm uncontracts the
edges of C. At this stage there are no residual paths between
sources and sinks in the entire graph, but there might
be positive or negative inflow at nodes of C. The algo-
rithm then calls the procedure FIXCONSERVATIONONPATH,
which pushes flow between the nodes of C so that there
are no residual paths between nodes of C with positive
inflow and nodes of C with negative inflow (the path in
the name of the procedure is the cycle C minus one edge).
This procedure is discussed in Section III; the interface is:

FIXCONSERVATIONONPATH(G,P, c,f0)
Input: a directed planar graph G, a simple path P , a capacity
function c, and a pseudoflow f0
Output: a pseudoflow f such that f − f0 satisfies conser-
vation everywhere but P , and
{v ∈ P : inflow(v) > 0} Gf9 {v ∈ P : inflow(v) < 0}.
Running Time: O(n log n+ |P |2 log2 n)

Next, the algorithm iterates over the nodes ai of A. The
algorithm calls a procedure CYCLETOSINKMAXFLOW that
pushes as much excess flow as possible from C to ai. Let
C+
i be the set of nodes of C that are reachable via residual

paths from some node of C with positive inflow at the
beginning of iteration i. CYCLETOSINKMAXFLOW pushes
flow among the nodes of C+

i and from the nodes of C+
i to ai

so that the inflow at every node of C+
i remains non-negative

and there are no residual paths to ai from positive-inflow
nodes of C. The interface is:

CYCLETOSINKMAXFLOW(G, c,f0, C, t)
Input: a directed planar graph G with capacities c, a
pseudoflow f0, a simple cycle C, a sink t.
Assumes: ∀v ∈ C+, inflowf0(v) ≥ 0, where C+ = {v ∈
C : {x ∈ C : inflowf0(x) > 0}

Gf0→ v}.
Output: a pseudoflow f s.t. (i) f − f0 obeys conservation
everywhere but C+ ∪ {t}, (ii) ∀v ∈ C+, inflowf (v) ≥ 0,

(iii) {v ∈ C : inflowf (v) > 0} Gf9 t.
Running Time: O(n log n+ |C|2 log2 n).

A symmetric procedure, SOURCETOCYCLEMAXFLOW, is
called to push flow from ai to C to reduce the amount of
negative inflow. Finally, the algorithm pushes flow back from
any nodes of C with positive inflow to S and pushes flow
back from T into any nodes of C with negative inflow.



MSMSMAXFLOW(G, c,S,T ,A)

Input: a directed planar graph G with non-negative
capacities c, a set S of source nodes, a set T of sink
nodes, a set A = {a1, . . . , ak} of size at most six.
Output: a pseudoflow f obeying conservation everywhere
except S ∪ T ∪A, such that S

Gf9 T , S
Gf9 A, A

Gf9 T .

1: add zero-capacity arcs to triangulate and two-connect
G (required for simple cycle separators)

2: find a cycle separator C in G
3: ensure that C contains no sources or sinks
4: let P = C − {e} where e is one edge of C
5: contract all the edges of P , turning e into a self loop

incident to the only remaining node v of C
6: let G1 and G2 be the subgraphs of G enclosed and not

enclosed by e, respectively
7: f := MSMSMAXFLOW(G1, c|G1

, S ∩ G1, T ∩
G1, (A ∩G1) ∪ {v})

8: f := f + MSMSMAXFLOW(G2, c|G2
, S ∩ G2, T ∩

G2, (A ∩G2) ∪ {v})
9: uncontract the edges of P

10: f := FIXCONSERVATIONONPATH(G,P, c,f )
11: for i = 1, 2, . . . , k
12: f := CYCLETOSINKMAXFLOW(G, c,f , C, ai)
13: f := SOURCETOCYCLEMAXFLOW(G, c,f , ai, C)
14: push positive excess from C to S and negative excess

to C from T
15: return f

The proof of correctness of MSMSMAXFLOW is given in
Section V. It is based on the following lemmata.

Lemma II.1. (Sources Lemma) Let f be a flow with source
set X . Let A,B be two disjoint sets of nodes. Then

A ∪X G9 B ⇒ A
Gf9 B.

Lemma II.2. (Sinks Lemma) Let f be a flow with sink set
X . Let A,B be two disjoint sets of nodes. Then

A
G9 B ∪X ⇒ A

Gf9 B.

For node sets W,Y,Z, we will use the notation sources
lemma(W,Y,Z) to indicate the use of the Sources Lemma
to establish that there are no W -to-Y residual paths after
a flow with source set Z is pushed. We will use sinks
lemma(W,Y,Z) in a similar manner.

Running Time Analysis: The number of nodes of the
separator cycle C used to partition G into G1 and
G2 is O(

√
|G|). Therefore, each invocation of FIX-

CONSERVATIONONPATH, CYCLETOSINKMAXFLOW and
SOURCETOCYCLEMAXFLOW in G takes O(|G| log |G| +
|C|2 log2 |C|) = O(|G| log2 |G|) time. A standard analysis
of the recurrence (see, e.g., [7]) shows that the algorithm
runs in O(n log3 n) time.

III. ELIMINATING RESIDUAL PATHS BETWEEN NODES ON
A PATH

In this section we present an efficient implementation of
the fixing procedure which, roughly speaking, given a path
with nodes having positive, negative, or zero inflow, pushes
flow between the nodes of the path so that eventually there
are no residual paths from nodes with positive inflow to
nodes with negative inflow.

We begin by describing an abstract algorithm for the
fixing procedure. It resembles a technique used by Venkate-
san and Johnson [18]. Let M be the sum of capacities
of all of the darts of G. The algorithm first increases the
capacities of darts of the path P and their reverses by M . Let
p1, p2, . . . , pk+1 be the nodes of P . The algorithm processes
the nodes of P one after the other. Processing pi consists
of decreasing the capacities of di = pipi+1 and rev(di)
by M (i.e., back to their original capacities), and trying to
eliminate positive inflow w at pi by pushing at most w units
of flow from pi to pi+1. After the push, either the flow
obeys conservation at pi or there are no residual paths from
pi to any of the other nodes of P (this is where we use the
large capacities on the darts between unprocessed nodes).
Negative inflow at pi is similarly handled by pushing flow
from pi+1 to pi. We omit the formal proof of correctness.

ABSTRACTFIXCONSERVATIONONPATH(G,P, c,f0)

Input: directed planar graph G, simple path
P = d1d2 . . . dk, capacity function c, pseudoflow f0
Output: a pseudoflow f ′ s.t. (i) f ′ − f0 satisfies
conservation at nodes not on P , and (ii) with respect to f ′,
there are no residual paths from nodes of P with positive
inflow to nodes of P with negative inflow.

1: f ′ = f0
2: c[d] = c[d] +M for all darts d of P ∪ rev(P )
3: for i = 1, 2, . . . , k
4: let pi and pi+1 be the tail and head of di, respectively
5: // reduce the capacities of d and rev(d) by M and adjust

the flow appropriately
6: for d ∈ {di, rev(di)}
7: c[d] := c[d]−M
8: f ′[d] := min{f ′[d], c[d]}
9: f ′[rev(d)] := −f ′[d]

10: excess := inflow at pi
11: if excess > 0 then d := di else d := rev(di) // find

in which direction flow should be pushed
12: add to f ′ a maximum feasible flow from tail(d) to

head(d) with limit excess
13: return f ′

A. An Inefficient Implementation
In this section, we give an inefficient implementation of

line 12 of the abstract algorithm. This will facilitate the



Inefficient Implementation of line 12 of ABSTRACTFIXCONSERVATIONONPATH

1: // push flow on d to make its residual capacity zero as required for Hassin’s algorithm
2: residual capacity := c[d]− f [d]− φ[headG∗(d)] + φ[tailG∗(d)]
3: val := min{residual capacity, |inflow(pi)|} // amount of flow to push on d

4: f [d] := f [d] + val ; f [rev(d)] := −f [d]
5: // push excess inflow from tail(d) to head(d) using Hassin’s algorithm
6: let `[d′] := c[d′]− f [d′]− φ[headG∗(d′)] + φ[tailG∗(d′)] for all darts d′ ∈ G // lengths are residual capacities
7: `[rev(d)] := |inflow(pi)| // set the limit on the residual capacity of rev(d)
8: φi(·) := DIJKSTRA(G∗, `, headG∗(d)) // face potential are distances in G∗ from headG∗(d) w.r.t. residual capacities
9: val := φi[headG∗(d)]− φi[tailG∗(d)] // the amount of flow assigned to d by the circulation corresponding to φi

10: f [d] := f [d]− val ; f [rev(d)] := −f [(d)] // do not push the circulation on d and rev(d)
11: φ = φ+ φi // accumulate the current circulation

explanation of the efficient procedure in the next section.
We first review the necessary ideas and tools.

1) Hassin’s algorithm for maximum st-planar flow: An
st-planar graph is a planar graph in which nodes s and t are
incident to the same face. Hassin [12] gave an algorithm
for computing a maximum flow from s to t in an st-
planar graph. We briefly describe our interpretation of this
algorithm since we use it in implementing line 12 of the
abstract algorithm.

Hassin’s algorithm starts by adding to G an artificial
infinite capacity arc a from t to s. Let d be the dart that
corresponds to a and whose head is t. Let t∗ be the head
in G∗ of the dual of d. Compute in the dual G∗ a shortest
path tree rooted at t∗, where the length of a dual dart is
defined as the capacity of the primal dart. Let φ[·] denote
the shortest path distances from t∗ in G∗. Consider the flow

ρ[d′] = φ[headG∗(d′)]− φ[tailG∗(d′)] for all darts d′ (1)

After removing the artificial arc a from G, ρ is a maximum
feasible flow from s to t in G. We say that φ is a face
potential vector that induces ρ.

In our algorithm we are interested in a max flow with
limit x from s to t rather than a maximum flow, i.e., a flow
whose value is at most a given number x but is otherwise
maximal. It is not difficult to see that setting the capacity
of the artificial arc a to x instead of infinity results in the
desired limited max flow [21].

Our algorithm, instead of using an artificial arc from t to
s, uses an existing arc whose endpoints are s and t as the
arc a above. In order for this to work, the capacity of the
dart d that corresponds to a and whose head is t must be
zero. The algorithm achieves this by first pushing flow on d
to saturate it. Also note that our algorithm does not remove
a from G. Hence ρ is a feasible circulation, rather than a
maximum flow, since flow is being pushed back from t to s
along a. To convert it into a maximum flow, the algorithm

must remove flow on a. If we define f by

f [d′] =

{
−ρ[d′] if d′ corresponds to a
0 otherwise , (2)

then ρ+ f is a maximum st-flow. We will use the fact that
this flow can be represented jointly by the face potential
vector φ and the flow values f [d′] for the two darts
corresponding to a.

2) The Inefficient Implementation: Recall that f0 is the
flow at the beginning of the procedure. Observe that the
change to the flow in iteration i of the abstract algorithm
(line 12) is a flow between the endpoints of the dart di. As
discussed in Section III-A1, this flow can be represented as
the sum of (i) a circulation ρi and (ii) a flow on di and
rev(di). Summing over the first i iterations, the flow f ′ at
that time can be represented as the sum

f ′ = ρ+ f (3)

where ρ =
∑i
j=1 ρj is a circulation and f is a flow

assignment that differs from f0 only on the darts of {dj}ij=1

and their reverses.
Now we describe the inefficient implementation of line 12

of ABSTRACTFIXCONSERVATIONONPATH. The total flow
f ′ is maintained by representing f and the circulation ρ as in
Eq. (3). f is represented explicitly, but, in preparation for the
efficient implementation, the circulations ρj are represented
implicitly by the face-potentials φj . By linearity of Eq. (1),
the sum φ =

∑i
j=1 φj is the face potential vector that

induces the circulation ρ.
Recall that d is the dart of C such that flow needs to

be sent from tail(d) to head(d) (line 11 of ABSTRACT-
FIXCONSERVATIONONPATH). In lines 2 – 4, the procedure
pushes as much as possible on d itself. Consequently, either
d is saturated or conservation at pi is achieved.

Next, an implementation of Hassin’s algorithm pushes
a maximum flow with limit |inflow(pi)| from tail(d) to
head(d). The procedure first sets the length of darts to their
residual capacities (line 6) and sets the length of rev(d) to be



Figure 1. An example illustrating that the nodes of X∗ are on the boundary
of a single face of H∗. The diagram shows part of the graph G and some
edges of its dual G∗. Edges of G are solid blue. Edges of P are bold.
Dual edges are double lined red. The dual edges of P are in double lined
dashed red. The nodes of X∗ are represented by stars.

the flow limit |inflow(pi)| (line 7). Since the flow maintained
is feasible, all residual capacities are non-negative. The
procedure then computes all the headG∗(d)-to-f distances
φi[f ] in G∗ using Dijkstra’s algorithm (line 8). Let ρi be
the circulation corresponding to the face-potential vector φi.
The procedure sets val equal to ρi[d] in line 9, then subtracts
val from f [d] and adds it to f [rev(d)]. Finally, in the last
line, the current circulation is added to the accumulated
circulation by adding the potential φi to φ.

B. An Efficient Implementation

In this section we give an efficient implementation of
ABSTRACTFIXCONSERVATIONONPATH. We first review
the necessary tools.

1) Fakcharoenphol and Rao’s Efficient Dijkstra Imple-
mentation: Let X be a set of nodes. Let H be a planar graph
in which the nodes of X lie a single face. Let x1, x2, · · · be
the clockwise order of the nodes of X on that face. Let P be
a set of darts not necessarily in the graph H whose endpoints
are nodes in X . Fakcharoenphol and Rao [7] described a
data structure that can be used in a procedure that efficiently
implements Dijkstra’s algorithm in H ∪ P . The procedure
takes as input a table D such that D[i, j] stores the distance
between xi and xj in H , an array ` that stores the lengths
of the darts in P , and a node v ∈ X . It is assumed that
the lengths in D and in ` are non-negative. The procedure
outputs the distances of the nodes of X from v in H ∪ P
in O(|X| log2 |X|+ |P | log |X|)-time.

We mention a technical issue whose importance will be-
come apparent for the second tool. The procedure partitions
the table D into several subtables {Dα}α that correspond
to distances between pairs of disjoint sets of nodes of X ,
where each set consists of nodes that are consecutive in
X . It is assumed that for each such subtable Dα, a data

structure that supports range minimum queries of the form
minj1≤j≤j2{Dα[i, j]} for every i, j1, j2 is given [7, footnote
on p. 884]. Fakcharoenphol and Rao note that such a data
structure can be easily implemented by using a range-search
tree for every row i of Dα. The time required to construct
all of the range-search trees for Dα is proportional to the
size of Dα.

2) Price Functions, Reduced Lengths and FR-Dijkstra:
For a directed graph G with dart-lengths `(·), a price
function is a function φ from the nodes of G to the reals.
For a dart d, the reduced length with respect to φ is
`φ(d) = `(d) + φ(tail(d)) − φ(head(d)). A feasible price
function is a price function that induces nonnegative reduced
lengths on all darts of G (see [17]).

Single-source distances form a feasible price function.
Suppose that, for some node r of G, for every node v of G,
φ(v) is the r-to-v distance in G with respect to `(·). Then
for every arc uv, φ(v) ≤ φ(u)+`(uv), so `φ(uv) ≥ 0. Here
we assume, without loss of generality, that all distances are
finite (i.e., that all nodes are reachable from r) since we can
always add arcs with sufficiently large lengths to make all
nodes reachable without affecting the shortest paths in the
graph.

We will use the following variant of Fakcharoenphol
and Rao’s efficient Dijkstra implementation. The procedure
FR(D, `,φX , v) takes as input the table D and the array ` as
described above, as well as a feasible price function φX on
the nodes of X and a node v ∈ X . It outputs the distances of
the nodes of X from v in H ∪ P w.r.t. the reduced lengths
w.r.t. φX . We stress that lengths in D and in ` may be
negative, but the reduced lengths are all non-negative. The
computation takes O(|X| log2 |X|+ |P | log |X|) time.

This differs from the procedure described in Sec-
tion III-B1 only in the existence of the price function φX .
We cannot afford to compute the entire table of reduced
lengths since that would dominate the running time of the
algorithm in [7]. Instead, whenever their algorithm requires
some specific reduced length, we can compute it in constant
time from D. This, however, does not suffice. Recall that
the algorithm in [7] requires that, for each of the subtables
Dα, range-search trees that support range minimum queries
of the form minj1≤j≤j2{Dα[i, j] + φX [xi] − φX [xj ]} for
every i, j1, j2 are given. Note that the results of such queries
may be different for different price functions. Computing
the range-search trees would take time O(|X|2), which
would dominate the running time of the entire procedure.
Therefore, we use Monge range-query data structures, due
to Kaplan and Sharir [20], which can be constructed from the
entire table D in O(|X| log2 |X|) time, and answer queries
of the desired form in O(log |X|) time.

3) The Procedure: Finally, we describe the efficient im-
plementation. The procedure keeps track of the inflow at
each node of P in an array v[·]. As in the inefficient
implementation, the procedure will maintain the total flow



Efficient Implementation of line 12 of ABSTRACTFIXCONSERVATIONONPATH

1: // push flow on d to make its residual capacity zero as required for Hassin’s algorithm
2: residual capacity := c[d]− f [d]− φX [headG∗(d)] + φX [tailG∗(d)]
3: val := min{residual capacity, |v[pi]|} // amount of flow pushed on d

4: f [d] = f [d] + val ; f [rev(d)] := −f [d]
5: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val // update the inflow at pi and pi+1

6: // push excess inflow from tail(d) to head(d) using Hassin’s algorithm
7: let `[d′] := c[d′]−f [d′] for all darts d′ ∈ P ∪ rev(P ) // lengths of explicit darts are residual capacities (excluding circulation component)
8: `[rev(d)] := |v[pi]|−φX [tailG∗(rev(d))]+φX [headG∗(rev(d))] // limit residual capacity of rev(d) (adjusted by circulation component)
9: φXi (·) := FR(D∗, `,φX , headG∗(d)) // distances in G∗ from headG∗(d) w.r.t. the reduced lengths induced by φX

10: val := φXi [headG∗(d)]− φXi [tailG∗(d)] // the amount of flow assigned to d by the circulation corresponding to φX
i

11: f [d] := f [d]− val ; f [rev(d)] := −f [(d)] // remove the flow assigned by the circulation to d and rev(d)
12: φX = φX + φXi // accumulate the current circulation
13: v[tailG(d)] = v[tailG(d)]− val ; v[headG(d)] = v[headG(d)] + val // update the inflow at pi and pi+1

as the sum of a circulation ρ and a flow assignment f that
differs from f0 only on the darts of P ∪ rev(P ). Initially
f is set equal to f0. The circulation ρ will be represented
by a face-potential vector φ. However, we will show that it
suffices to maintain just those entries of φ that correspond
to faces incident to P .

Define each dart d’s length by `(d) = c[d]−f [d]. Let X∗

be the set of endpoints in the planar dual G∗ of the darts
of P (i.e. the primal faces incident to P ). Let H∗ be the
graph obtained from G∗ by removing the darts of P . Note
that in H∗, all the nodes of X∗ that did not disappear (i.e.,
that have degree greater than zero) are on the boundary of
a single face, as illustrated in Figure 1.

The procedure uses a multiple-source shortest paths
(MSSP) algorithm [5], [22] to compute a table D∗[·, ·] of
X∗-to-X∗ distances in H∗ with respect to the lengths `(·).

The implementation of lines 1– 11 of ABSTRACTFIX-
CONSERVATIONONPATH using the chosen representation of
f ′ is straightforward. We therefore focus on the implemen-
tation of line 12.

Consider iteration i of the algorithm. The main difference
between the inefficient implementation and the efficient one
is in implementing the Dijkstra step for computing shortest
paths in the dual. Instead of computing the entire shortest-
path tree, the procedure computes just the distance labels
of nodes in X∗. This is done using the FR data structure,
whose initialization requires the X∗-to-X∗ distances in H∗

with respect to the residual capacities. We now explain how
these distances can be obtained.

The flow on a dart d in the primal is

f [d] + φ[headG∗(d)]− φ[tailG∗(d)]. (4)

Therefore the residual capacity of d is

(c[d]− f [d])− φ[headG∗(d)] + φ[tailG∗(d)] (5)

which is its reduced length `φ[d] with respect to the length
`(·) and price function φ.

Suppose that d belongs to H∗, i.e. d is not one of the
darts of P ∪ rev(P ). The procedure never changes f [d], so
f [d] = f0[d]. Therefore `(d) = c[d]− f0[d]. These lengths
are known at the beginning of the procedure’s execution. The
reduced length of an X∗-to-X∗ path Q = d′1, d

′
2, · · · , d′j in

H∗ is
j∑
i=1

(`(d′i)− φ[headG∗(d′i)] + φ[tailG∗(d′i)]) =(
j∑
i=1

`(d′i)

)
− φ[end(Q)] + φ[start(Q)].

(6)

Therefore, for any nodes x, y ∈ X∗, the x-to-y distance in
H∗ w.r.t. the residual capacity is given by D∗[x, y]−φ[y]+
φ[x]. Since the procedure maintains the restriction of φ to
nodes of X∗, this distance can be obtained in constant time.

It follows from the above discussion that, after executing
line 12 of ABSTRACTFIXCONSERVATIONONPATH using
the efficient implementation for the last time, the flow
assignment f maintained by the efficient implementation is
the same as the one that would have been computed if the
inefficient implementation were used. Moreover, the poten-
tial function φX computed by the efficient implementation
is the restriction to X∗ of the potential function φ that would
have been computed by the inefficient implementation.

As discussed in Section III-A, the flow f ′ to be returned
is ρ+f where ρ is the circulation induced by φ. It suffices,
however, to return χ+f where χ is any feasible circulation
in Gf : this change does not alter the inflow at any node,
and, since it does not change the residual capacity of any
cut, does not introduce new residual paths.

To compute χ, the algorithm computes shortest-path
distances in the dual of Gf from a node x ∈ X∗. This
computation consists of two steps. In the first step, the



algorithm again uses FR with price function φ to compute
the distances just to nodes of X∗. In the second step, the
algorithm extends this distance labeling to include all nodes
of G∗. Any shortest x-to-v path consists of an x-to-x′ prefix
(where x′ ∈ X∗) and a x′-to-v suffix that passes through no
nodes of X∗. The distance to v, therefore, is

min
x′∈X∗

min{d(x′) + `(Q) :

Q an x′-to-v path not passing through X∗} (7)

where d(x′) is the x-to-x′ distance. Note that every edge
of G∗ whose endpoints are not both in X∗ has nonnegative
length. Therefore the distances (7) can be computed by a
variant of Dijkstra’s algorithm in which each node x′ ∈ X∗
is initially inserted into the priority queue with label d(x′).

Running Time Analysis: Let n and k be the number of
nodes in G and in P , respectively. The initialization time is
dominated by the O(n log n+k2 log n) time for MSSP. The
execution of each iteration of the main loop is dominated by
the call to FR, which takes O(k log2 k) time. The number
of iterations is k−1, leading to a total of O(k2 log2 k) time
for execution of the main loop. Computing the circulation χ
requires one more call to FR and one Dijkstra computation
in the entire graph, which takes O(n log n) time. Thus
the total running time of the efficient implementation of
FIXCONSERVATIONONPATH is O(n log n+ k2 log2 k).

IV. PUSHING EXCESS INFLOW FROM A CYCLE

In this section we describe the procedure CYCLE-
TOSINKMAXFLOW that pushes excess inflow from a cycle
to a node not on the cycle.

To compute C+ in Line 1, consider the residual graph of
G w.r.t. f0. Add a node v and non-zero capacity arcs vw for
every node w whose inflow w.r.t. f0 is positive (these arcs
may not preserve planarity). In O(|G|) time, find the set X
of nodes that are reachable from v via darts with non-zero
capacity. Then C+ = C ∩X .

Since C+ consists of all nodes of C reachable via residual
paths from the nodes of C with positive inflow, the flow
computed by the procedure involves no darts incident to
nodes in C − C+. Thus, restricting the computation to the
graph obtained from G by deleting the nodes in C − C+

(line 2) does not restrict the computed flow. After deletion,
adding artificial arcs between consecutive nodes of C+

(line 4) will not violate planarity. Contracting the artificial
arcs effectively turns C+ into a single node v1. Next, the
procedure computes a maximum flow f from C+ to t
w.r.t. residual capacities c− f0. This is done by invoking a
single-source single-sink maximum flow algorithm [2] with
source v1 and sink t (line 7). Uncontracting the artificial
arcs turns f into a maximum C+-to-t flow in G w.r.t. the
residual capacities c − f0. However, some of the nodes of
C+ may have negative inflow w.r.t. f0 + f . In line 9, the
procedure calls FIXCONSERVATIONONPATH to reroute the

CYCLETOSINKMAXFLOW(G, c,f0, C, t)

Input: a directed planar graph G with capacities c, a
pseudoflow f0, a simple cycle C, a sink t.
Assumes: ∀v ∈ C+, inflowf0(v) ≥ 0, where

C+ = {v ∈ C : {x ∈ C : inflowf0(x) > 0}
Gf0→ v}.

Output: a pseudoflow f s.t. (i) f − f0 obeys conservation
everywhere but C+ ∪ {t}, (ii) ∀v ∈ C+, inflowf (v) ≥ 0,

(iii) {v ∈ C : inflowf (v) > 0} Gf9 t.

1: let C+ := {v ∈ C : there exists a residual path to v
from a node x ∈ C with inflowf0(x) > 0}

2: delete the nodes of C − C+

3: let v1, v2, . . . , v` be the nodes of C+, labeled according
to their cyclic order on C

4: add artificial arcs vivi+1 for 1 ≤ i < `
5: let P be the v1-to-v` path of artificial arcs
6: contract all the edges of P , collapsing C+ into the single

node v1
7: f := ST-MAXFLOW(G, c− f0, v1, t)
8: undo the contraction of the edges of P
9: f := FIXCONSERVATIONONPATH(G,P, c,f0+f ) −f0

10: modify f to push back flow to nodes of C+ whose
inflow w.r.t f0 + f is negative

11: f := f0 + f
12: return f

flow f among the nodes of C+ so that, w.r.t. f0 + f , there
are no residual paths from nodes of C+ with positive inflow
to nodes of C+ with negative inflow. This implies that any
node of C+ that still has negative inflow has pushed too
much flow. Line 10 modifies f to push back such excess
flow so that no node of C+ has negative inflow w.r.t. f0+f .
This is done using the technique mentioned in Section I-A.
Finally, the procedure returns f0 + f .

Correctness of CYCLETOSINKMAXFLOW: Any flow
that is pushed by the procedure originates at C+ and termi-
nates at C+ ∪ {t}. Therefore, f − f0 violates conservation
only at C+ ∪ {t}. In line 10, flow of f is pushed back so
that no node of C+ has negative inflow w.r.t. f0 + f . It is
possible to do so by only pushing back flow of f (rather
than flow of f0 + f ) since by assumption no node of C+

has negative inflow w.r.t. f0.
By maximality of the flow pushed in line 7, just after

line 7 is executed there are no C+-to-t residual paths.
This remains true when the edges of P are uncontracted
in Line 8. In line 9 flow is pushed among the nodes of
C+, so by sources lemma(C+, t, C+), there are no C+-to-
t residual paths after line 9 either. Moreover, by definition
of FIXCONSERVATIONONPATH, there are no C>0-to-C<0

residual paths immediately after line 9 is executed, where
C>0 (C<0) is the set of nodes of C+ with positive (neg-
ative) inflow at that time. Line 10 pushes flow into C<0,



making all the nodes of C<0 obey conservation. By sinks
lemma(C>0, t, C<0) there are no C>0-to-t residual paths
upon termination. This completes the proof since C>0 is
the set of nodes of C with positive inflow upon termination.

Running Time Analysis: We next analyze the running
time of this procedure on an n-node graph G and a k-
node cycle C. The st-maximum flow computation in line 7
takes O(n log n) time using the algorithm of Borradaile and
Klein [2]. The running time of the procedure is therefore
dominated by the call to FIXCONSERVATIONONPATH in
line 9 which takes O(n log n+ k2 log2 k) time.

V. CORRECTNESS OF MSMSMAXFLOW

We prove that each step of the algorithm eliminates some
residual paths without reintroducing residual paths.

Lemma V.1. At any time in the running of the algorithm
after the last execution of line 8 and before the execution of
line 14, S 9 T , S 9 A, S 9 C, A9 T , C 9 T .

Proof: The properties hold just after line 8 by the
properties of the recursive calls and by the fact that any
residual path between G1 and G2 consists of a residual path
to C and a residual path from C. Note that, because of the
contractions in line 5, at this time the cycle C consists of
just the node v. The nonexistence of residual paths w.r.t. v
in the recursive calls implies the nonexistence of residual
paths w.r.t. any node of C after the contractions are undone
in line 9.

We next prove that the properties are maintained until
just before the execution of line 14. By the above argument,
there is a cut separating S from T ∪A∪C that is saturated
just after line 9. The procedure in line 10 only pushes flow
between vertices of C, and in lines 11– 13, flow is only
pushed between the nodes of A and C. Since these sets are
all on the same side of the cut, the cut stays saturated. It
follows that S 9 {T,A,C} at any point after line 8 and
before line 14. A similar argument applied to a saturated
cut separating A∪C from T shows A9 T and C 9 T .

Recall that C+
i is the set of nodes of C that are reachable

via residual paths from some node of C with positive excess
at the beginning of iteration i of the loop in line 11, and that
C−i is the set of nodes of C that have residual paths to some
node of C with negative excess at that time.The next lemma
follows from the definition of FIXCONSERVATIONONPATH.

Lemma V.2. Just after line 10 is executed, C+
1 9 C−1 .

Lemma V.3. For all i < j, C+
j ⊆ C

+
i and C−j ⊆ C

−
i

Proof: It suffices to show that, for all i, C+
i+1 ⊆ C

+
i and

C−i+1 ⊆ C
−
i . The flow pushed in iteration i of line 12 can be

decomposed into a flow whose sources and sinks are all in
C+
i and a flow whose sources are in C+

i and whose sink is
ai. Therefore, the set X of nodes of C with positive inflow
immediately after iteration i of line 12 is a subset of C+

i . By

definition of SOURCETOCYCLEMAXFLOW, the set of nodes
of C with positive inflow does not change after line 13 is
executed. Therefore, C+

i+1 is the set of nodes reachable from
X by a residual path after iteration i of line 13.

By definition of C+
i , immediately before iteration i of

line 12 there are no C+
i -to-(C − C+

i ) residual paths. By
sources lemma(C+

i , C−C
+
i , C

+
i ), there are no C+

i -to-(C−
C+
i residual paths immediately after iteration i of line 12 as

well. This shows that there are no X-to-(C −C+
i ) residual

paths at that time.
The flow pushed in line 13 can be decomposed into a

flow whose sources and sinks are all in C−i and a flow
whose source is ai and whose sinks are all in C−i . By sinks
lemma(C+

i , C − C+
i , C

−
i ), there are no C+

i -to-(C − C+
i )

residual paths immediately after iteration i of line 13. This
shows that there are no X-to-(C − C+

i ) residual paths at
that time. Hence C+

i+1 ⊆ C
+
i , as desired.

The proof of the analogous claim for C−i+1 is similar.

Lemma V.4. Just after line 12 is executed in iteration i,
C+
i 9 C−i , C+

i+1 9 {aj}j≤i, {aj}j<i 9 C−i .

Proof: The flow pushed in line 12 can be decomposed
into a flow whose sources and sinks are all in C+

i and a
flow whose sources are in C+

i and whose sink is ai.
• C+

i 9 C−i by sources lemma(C+
i , C

−
i , C

+
i )

• C+
i+1 9 {aj}j<i by sources lemma(C+

i+1, aj , C
+
i )

• C+
i+1 9 {ai} by definition of

CYCLETOSINKMAXFLOW
• {aj}j<i 9 C−i by sources lemma(aj , C−i , C

+
i )

The following lemma is proved similarly.

Lemma V.5. Just after line 13 is executed in iteration i,
C+
i 9 C−i , C+

i+1 9 {aj}j≤i, {aj}j≤i 9 C−i+1.

Let C+ (C−) denote the set of nodes in C with positive
(negative) inflow just before line 14 is executed.

Corollary V.6. Just before line 14 is executed, C+ 9
C−, C+ 9 A,A9 C−.

Finally, the next lemma proves the algorithm is correct.

Lemma V.7. The following are true upon termination:
1) f is a pseudoflow
2) f obeys conservation everywhere except at S, T,A
3) S

Gf9 T, S
Gf9 A,A

Gf9 T .

Proof: Since every addition to f along the algorithm
respects capacities of all darts, f is a pseudoflow at all times.
By induction, the only nodes that do not obey conservations
after the recursive calls are those of S, T and A. Subsequent
changes to f only violate conservation on the nodes of C,
but any such violation is eliminated in line 14. Therefore
upon termination f obeys conservation everywhere except
S, T and A.



By Lemma V.1 and Corollary V.6, before line 14 is
executed, C+ 9 A and C 9 T . Therefore the flow pushed
back from C+ in line 14 is pushed back to S. Similarly,
the flow pushed back to C− is pushed back from T . Let
f+ (f−) be the flow pushed back from C+ to S (from T to
C−) in line 14. Consider first pushing back f+.
• S 9 T by sources lemma(S, T, C+)
• S 9 A by sources lemma(S,A,C+)
• A9 T by sources lemma(A, T,C+)
• S 9 C− by sources lemma(S,C−, C+)
• A9 C− by sources lemma(A,C−, C+)

Next consider pushing f−
• S 9 T by sinks lemma(S, T, C−)
• S 9 A by sinks lemma(S,A,C−)
• A9 T by sinks lemma(A, T,C−)
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